Dinámica de electrones acoplados a texturas magnéticas

El presente proyecto es una propuesta de investigación básica para comprender aspectos fundamentales de la dinámica de electrones de conducción acoplados a texturas de espín magnéticas (principalmente, paredes de dominio y skyrmiones), una temática que está siendo intensamente investigada por sus po...

Descripción completa

Detalles Bibliográficos
Autor principal: Lobos, Alejandro Martín
Otros Autores: Albornoz, Lucas Javier; Guruciaga, Pamela Carolina; Quiroga, Juan Manuel; Kolton, Alejandro Benedykt; Bustingorry, Sebastian
Formato: info:eu-repo/semantics/other
Lenguaje:Español
Publicado: 2019
Materias:
Acceso en línea:http://bdigital.uncu.edu.ar/14465
Descripción
Sumario:El presente proyecto es una propuesta de investigación básica para comprender aspectos fundamentales de la dinámica de electrones de conducción acoplados a texturas de espín magnéticas (principalmente, paredes de dominio y skyrmiones), una temática que está siendo intensamente investigada por sus potenciales aplicaciones en nuevas tecnologías de almacenamiento y procesamiento de la información. Además de la generación de nuevos conocimientos, este proyecto buscará afianzar lazos científicos de colaboración teórico-experimental entre grupos de reciente formación en la Facultad de Ciencias Exactas y Naturales (FCEN) de la UNCuyo y del Instituto Balseiro (IB), y promoverá la generación de valiosos recursos humanos incorporando estudiantes, becarios e investigadores en formación. Recientemente se han producido importantes avances y nuevos descubrimientos en el área de la espintrónica y de la física del Estado Sólido que han permitido la manipulación de la magnetización a escalas nanométricas. Esto ha abierto la puerta a una nueva generación de dispositivos altamente eficientes y con una alta densidad de almacenamiento de datos, tales como las memorias MRAM ("magnetic random-access memories"), y las memorias "race-track". Un punto central que persiguen las tecnologías basadas en espintrónica es lograr el control puramente eléctrico del magnetismo a escalas nanométricas en un material, evitando así la aplicación de campos magnéticos externos o de partes mecánicas móviles para la escritura/lectura magnética de la información. Esencialmente, esto se logra mediante el acoplamiento entre los electrones conducción (a través de la inyección de corrientes polarizadas en espin) y los momentos magnéticos que dan lugar a las texturas magnéticas del material. Por lo tanto, la comprensión de la física microscópica es crucial para el diseño de dispositivos más eficientes. Este proyecto apunta precisamente a comprender mejor el efecto del acoplamiento del sistema de espines con los electrones de conducción.