Construction of an spatial index of banking coverage for the central region of Argentina.
The banking sector is a key sector that enables economic development in any country or region by providing financial services and credit to firms and households. By this, it is crucial to measure how the banking sector evolves in certain regions. This paper constructs a banking index (BI) for the ma...
Autor principal: | |
---|---|
Formato: | Revistas |
Lenguaje: | Español |
Publicado: |
Universidad de Cartagena
2020
|
Acceso en línea: | https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/3327 |
_version_ | 1782340341271101440 |
---|---|
author | García, Fernando |
author_facet | García, Fernando |
author_sort | García, Fernando |
collection | Revista |
description | The banking sector is a key sector that enables economic development in any country or region by providing financial services and credit to firms and households. By this, it is crucial to measure how the banking sector evolves in certain regions. This paper constructs a banking index (BI) for the main economic area of Argentina using georeferenced data with information provided by the Central Bank of Argentina and the last Argentinean census. The Geographically Weighted Principal Components Analysis (GWPCA) used seems to be a significant methodological contribution in comparison with the Principal Component Analysis (PCA), since the GWPCA incorporates the spatial heterogeneity ignored by the PCA. As to the results, the BI for the area suggests a higher level of banking coverage for two of the states (Santa Fe and Córdoba). The BI also suggests a heterogeneous behavior in the use the banking services for Córdoba and a homogeneous one for the remaining regional state (Entre Ríos). |
format | Revistas |
id | oai:revistas.unicartagena.edu.co:article-3327 |
institution | Revista Panorama Económico |
language | Español |
publishDate | 2020 |
publisher | Universidad de Cartagena |
record_format | ojs |
spelling | oai:revistas.unicartagena.edu.co:article-33272021-10-25T17:25:32Z Construction of an spatial index of banking coverage for the central region of Argentina. Construcción de un índice espacial de bancarización : un estudio para la región centro de Argentina. García, Fernando Banking Geographically Weighted Principal Components Bancarización Componentes Principales Geográficamente Ponderadas The banking sector is a key sector that enables economic development in any country or region by providing financial services and credit to firms and households. By this, it is crucial to measure how the banking sector evolves in certain regions. This paper constructs a banking index (BI) for the main economic area of Argentina using georeferenced data with information provided by the Central Bank of Argentina and the last Argentinean census. The Geographically Weighted Principal Components Analysis (GWPCA) used seems to be a significant methodological contribution in comparison with the Principal Component Analysis (PCA), since the GWPCA incorporates the spatial heterogeneity ignored by the PCA. As to the results, the BI for the area suggests a higher level of banking coverage for two of the states (Santa Fe and Córdoba). The BI also suggests a heterogeneous behavior in the use the banking services for Córdoba and a homogeneous one for the remaining regional state (Entre Ríos). La bancarización resulta importante en tanto constituye un motor para el desarrollo económico y social de un país o región al favorecer la disponibilidad de servicios financieros para la población y las empresas y del nivel de acceso y utilización de tales servicios por parte de los distintos agentes económicos. En este sentido, resulta clave una medición adecuada del proceso de bancarización a través de un Índice de Bancarización. Este trabajo propone la construcción de un Índice de Bancarización para la región Centro de Argentina considerando información proporcionada por el Banco Central de la República Argentina y el Instituto Nacional de Estadística y Censos para el año 2010. Como los datos están georeferenciados, resulta adecuado aplicar Componentes Principales Geográficamente Ponderadas que permiten incorporar la heterogeneidad espacial de los datos, es decir considerar situaciones donde los datos espaciales no son bien descriptos por un modelo global. Los resultados permitirían corroborar que esta metodología constituye un aporte metodológico significativo. Se destaca la provincia de Santa Fe, exhibiendo un mayor nivel de bancarización, siguiendo en importancia la provincia de Córdoba, pero con un comportamiento más heterogéneo que contrasta con el de la provincia de Entre Ríos, que aunque presenta un nivel de bancarización menor exhibe un comportamiento más homogéneo. Universidad de Cartagena 2020-10-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/3327 10.32997/pe-2020-3327 Panorama Económico Journal; Vol. 28 No. 4 (2020); 232-241 Panorama Económico; Vol. 28 Núm. 4 (2020); 232-241 Panorama Económico; v. 28 n. 4 (2020); 232-241 2463-0470 0122-8900 10.32997/pe-2020 spa https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/3327/2826 /*ref*/Amidzic, G., Massara, A., Mialou, A. (2014). Assessing countries' financial inclusion standing: a new composite index. Working Paper n°14/36, International Monetary Fund (IMF). Recuperado de: https://www.imf.org/external/pubs/ft/wp/2014/wp1436.pdf ; https://doi.org/10.5089/9781475569681.001 /*ref*/BANCO CENTRAL DE LA REPÚBLICA ARGENTINA (2010a). Información de Entidades Financieras. Superintendencia de Entidades Financieras y Cambiarias. /*ref*/BANCO CENTRAL DE LA REPÚBLICA ARGENTINA (2010b). Disponibilidades, Préstamos y Depósitos clasificados según la ubicación geográfica de la casa o sucursal de la entidad financiera. /*ref*/BANCO CENTRAL DE LA REPÚBLICA ARGENTINA (2015). Mi diccionario financiero. Recuperado de http://www.bancocentraleduca.bcra.gov.ar/PDFs/Diccionario_Financiero_Jovenes.pdf /*ref*/Camara, N., Tuesta, D. (2014). Measuring Financial Inclusion: a multidimensional index. BBVA Research, Working Paper N° 14/26. Recuperado de: https://www.bbvaresearch.com/wp-content/uploads/2014/09/WP14-26_Financial-Inclusion2.pdf ; https://doi.org/10.2139/ssrn.2634616 /*ref*/Chakravarty, S.; Pal, R. (2013): Measuring Financial Inclusion: an axiomatic approach. Journal of Policy modeling, 35(5), 813-837. Recuperado de: https://ideas.repec.org/p/ind/igiwpp/2010-03.html ; https://doi.org/10.1016/j.jpolmod.2012.12.007 /*ref*/Demsar, U., Harris, P., Brunsdon, C., Fotheringham, A.S., Mcloone, S. (2013): Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–28. https://doi.org/10.1080/00045608.2012.689236 /*ref*/Domínguez Serrano, M., Blancas Peral, F.J., Guerrero Casas, F.M., Gonzalez Lozano, M. (2011). Una revisión crítica para la construcción de indicadores sintéticos. Revista de Métodos Cuantitativos para la Economía y la Empresa, 11, 41-70. Recuperado de: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2094 /*ref*/Dray, S., Jombart, T. (2011). Revisiting Guerry's data: introducing spatial constraints in multivariate Analysis. The Annals of Applied Statistics, 5(4), 2278-2299. https://www.jstor.org/stable/23069330 ; https://doi.org/10.1214/10-AOAS356 /*ref*/Fotheringham, A.S., Brunsdon, C., Charlton, M. (2002): Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons. /*ref*/García, F. (2017). Un índice único de bancarización con datos georreferenciados con una aplicación para la Argentina. Ecos de Economía, 21(45), 24-38. https://doi.org/10.17230/ecos.2017.45.2 /*ref*/García, F. (2018). ¿Es posible un índice de bancarización en Argentina? Una aplicación espacial para Córdoba, Entre Ríos y Santa Fe. Estudios Económicos, 35(70), 57-77. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=7390266 ; https://doi.org/10.52292/j.estudecon.2018.1097 /*ref*/Gollini, I., Lu, B., Charlton, M.; Brunsdon, C., Harris, P. (2015). GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software, 63(17), 1–50. https://doi.org/10.18637/jss.v063.i17 /*ref*/GRUPO DE MONITOREO MACROECONÓMICO (2011): Indicadores de bancarización. Buenos Aires. Recuperado de https://www.gmm-mercosur.org /*ref*/Gupte, R., Venkataramani, B., Gupta, D. (2012). Computation of financial inclusion index for India. Procedia - Social and Behavioral Sciences, 37, 133-149. https://doi.org/10.1016/j.sbspro.2012.03.281 /*ref*/Harris, P., Brunsdon, C., Charlton, M. (2011). Geographically weighted principal components analysis. International Journal of Geographical Information Science, 25(10), 1717-1736. https://doi.org/10.1080/13658816.2011.554838 /*ref*/Hasan, R., Islam, E. (2016). Financial Inclusion Index at district levels in Bangladesh: a distance-based approach. Bangladesh Bank, Working Paper Series No 1603. Recuperado de https://ideas.repec.org/p/pra/mprapa/71344.html /*ref*/INSTITUTO NACIONAL DE ESTADÍSTICAS Y CENSOS (2010). Censo Nacional de Población, Hogares y Viviendas 2010, procesado con Redatam+SP. Recuperado de http://www.indec.gov.ar /*ref*/Lloyd, C. D. (2010). Analysing population characteristics using geographically weighted principal components analysis: a case study of Northern Ireland in 2001. Computers, Environment and Urban Systems, 34(5), 389-399. https://doi.org/10.1016/j.compenvurbsys.2010.02.005 /*ref*/Mishra, R. N., Verma, P.; Bose, S. (2014). Operationalising financial inclusion Index as a policy lever: Uttar Pradesh (in India) - A Case Study. Journal of Mathematics and Statistical Science, 2015, 149-165. https://doi.org/10.2139/ssrn.2381419 /*ref*/Moran, P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1), 17–23. https://doi.org/10.2307/2332142 /*ref*/Morales, L., Yañez, A. (2006). La bancarización en Chile, concepto y medición. Superintendencia de Bancos e Instituciones Financieras de Chile, Serie Técnica de Estudios. Recuperado de: http://www.cmfchile.cl/portal/publicaciones/610/articles-40031_doc_pdf.pdf /*ref*/Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffmann, A., Giovannini, E. (2008). Handbook on Constructing Composite Indicators: Methodology and User Guide. Paris: OECD Publishing. Recuperado de: https://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm /*ref*/Sarma, M. (2008). Index of financial inclusion. Working Paper N° 215, New Delhi: Indian Council for Research on International Economics Relations. /*ref*/Sarma, M. (2012). Index of Financial Inclusion – A measure of financial sector inclusiveness. Berlin Working Papers on Money, Trade, Finance and Development, N° 07 /*ref*/Sethy, S. K. (2016). Developing a financial inclusion index and inclusive growth in India. Theoretical and applied economics, 2(607), 187-206. Recuperado de: http://www.ectap.ro/developing-a-financial-inclusion-indexand-inclusive-growth-in-india-susanta-kumar-sethy/a1191/ /*ref*/Zulaica Piñeyro, C. M. (2013). Financial Inclusion index: proposal of a multidimensional measure for México. Revista Mexicana de Economía y Finanzas, 8(2), 157-180. https://doi.org/10.21919/remef.v8i2.46 Derechos de autor 2020 Fernando García https://creativecommons.org/licenses/by-nc-sa/4.0/ |
spellingShingle | García, Fernando Construction of an spatial index of banking coverage for the central region of Argentina. |
title | Construction of an spatial index of banking coverage for the central region of Argentina. |
title_full | Construction of an spatial index of banking coverage for the central region of Argentina. |
title_fullStr | Construction of an spatial index of banking coverage for the central region of Argentina. |
title_full_unstemmed | Construction of an spatial index of banking coverage for the central region of Argentina. |
title_short | Construction of an spatial index of banking coverage for the central region of Argentina. |
title_sort | construction of an spatial index of banking coverage for the central region of argentina. |
url | https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/3327 |