Forecast of business insolvency in Colombia through financial indicators.

Business insolvency affects both companies that enter this process and their suppliers of goods and services. This research uses financial indicators to forecast business insolvency one year in advance.The study was applied to 2,988 companies that reported financial information to the Superintendenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Correa Mejía, Diego Andrés, Lopera Castaño, Mauricio
Formato: Revistas
Lenguaje:Español
Publicado: Universidad de Cartagena 2019
Acceso en línea:https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639
_version_ 1782340335346647040
author Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
author_facet Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
author_sort Correa Mejía, Diego Andrés
collection Revista
description Business insolvency affects both companies that enter this process and their suppliers of goods and services. This research uses financial indicators to forecast business insolvency one year in advance.The study was applied to 2,988 companies that reported financial information to the Superintendency of Companies (Colombia) during 2017, of which 127 went into insolvency in 2018. The forecast considers financial indicators of liquidity, profitability and indebtedness, and contrasts the results of the logistic regression with the boosting algorithm. It is concluded that financial indicators allow predicting business insolvency. However, non-traditional methodologies such as the boosting algorithm that consider the information asymmetry should be used.
format Revistas
id oai:revistas.unicartagena.edu.co:article-2639
institution Revista Panorama Económico
language Español
publishDate 2019
publisher Universidad de Cartagena
record_format ojs
spelling oai:revistas.unicartagena.edu.co:article-26392020-07-03T00:06:02Z Forecast of business insolvency in Colombia through financial indicators. Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros. Prévisions de l'insolvabilité des entreprises en Colombie au moyen d'indicateurs financiers. Correa Mejía, Diego Andrés Lopera Castaño, Mauricio Insolvency Financial indicators Financial analysis Boosting algorithm Logistic regression Insolvencia empresarial Indicadores financieros Análisis financiero Algoritmo boosting Regresión logística Insolvabilité des entreprises Indicateurs financiers Analyse financière Algorithme de boosting Régression logistique Business insolvency affects both companies that enter this process and their suppliers of goods and services. This research uses financial indicators to forecast business insolvency one year in advance.The study was applied to 2,988 companies that reported financial information to the Superintendency of Companies (Colombia) during 2017, of which 127 went into insolvency in 2018. The forecast considers financial indicators of liquidity, profitability and indebtedness, and contrasts the results of the logistic regression with the boosting algorithm. It is concluded that financial indicators allow predicting business insolvency. However, non-traditional methodologies such as the boosting algorithm that consider the information asymmetry should be used. La insolvencia empresarial afecta tanto a las empresas que entran en este proceso como a sus proveedores de bienes y servicios. Esta investigación hace uso de indicadores financieros para pronosticar la insolvencia empresarial con un año de anticipación. El estudio fue aplicado a 2.988 empresas que reportaron información financiera a la Superintendencia de Sociedades (Colombia) durante el año 2017, de las cuales 127 entraron en proceso de insolvencia en 2018. El pronóstico considera indicadores financieros de liquidez, rentabilidad y endeudamiento, y contrasta los resultados de la regresión logística con el algoritmo boosting. Se concluye que los indicadores financieros permiten pronosticar la insolvencia empresarial, sin embargo se debe recurrir a metodologías no tradicionales como el algoritmo boosting que consideren la asimetría de la información. L'insolvabilité commerciale affecte à la fois les entreprises qui entrent dans ce processus et leurs fournisseurs de biens et services. Cette recherche utilise des indicateurs financiers pour prévoir l'insolvabilité des entreprises un an à l'avance.L'étude a été appliquée à 2988 entreprises qui ont communiqué des informations financières à la Surintendance des entreprises (Colombie) en 2017, dont 127 sont entrées en insolvabilité en 2018. La prévision prend en compte les indicateurs financiers de liquidité, de rentabilité et d'endettement et oppose les résultats de la régression logistique à l'algorithme de boosting. Il est conclu que les indicateurs financiers permettent de prévoir l'insolvabilité des entreprises. Cependant, des méthodologies non traditionnelles telles que l'algorithme de boosting qui considèrent l'asymétrie d'information devraient être utilisées. Universidad de Cartagena 2019-04-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639 10.32997/2463-0470-vol.27-num.2-2019-2639 Panorama Económico Journal; Vol. 27 No. 2 (2019); 510-526 Panorama Económico; Vol. 27 Núm. 2 (2019); 510-526 Panorama Económico; v. 27 n. 2 (2019); 510-526 2463-0470 0122-8900 10.32997/2463-0470-vol.27-num.2-2019 spa https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639/2220 /*ref*/Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x /*ref*/Amendola, A., Giordano, F., Parrella, M., y Restaino, M. (2017). Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355-368. https://doi.org/10.1002/asmb.2240 /*ref*/Barboza, F. , Kimura, H., y Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006 /*ref*/Beaver, W. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1966), 71-111. https://doi.org/10.2307/2490171 /*ref*/Ben, S. (2017). Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services, 36(November 2016), 197-202. https://doi.org/10.1016/j.jretconser.2017.02.005 /*ref*/Bredart, X., Vella, V., y Bonello, J. (2018). Machine Learning Models for Predicting Financial Distress. Journal of Research in Economics, 2(2), 174-185. https://doi.org/10.24954/JORE.2018.22 /*ref*/Calabrese, R., y Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: The generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172-1188. https://doi.org/10.1080/02664763.2013.784894 /*ref*/Calabrese, R., y Osmetti, S. A. (2015). Improving forecast of binary rare events data: A gam-based approach. Journal of Forecasting, 34(3), 230-239. https://doi.org/10.1002/for.2335 /*ref*/Correa-García, J. A. (2005). De la partida doble al análisis financiero. Contaduría Universidad de Antioquia, (46), 169-194. /*ref*/Correa-García, J. A., Gómez, S., y Londoño, F. (2018). Indicadores financieros y su eficiencia en la explicación de la generación de valor en el sector cooperativo. Rev.fac.cienc.econ., XXVI(2), 129-144. https://doi.org/10.18359/rfce.3859 /*ref*/Correa, D., Laura, M., Camila, R., y Alejandra, Y. (2018). Los indicadores de costos: una herramienta para gestionar la generación de valor en las empresas industriales colombianas. Estudios Gerenciales, 34(147), 190-199. https://doi.org/10.18046/j.estger.2018.147.2643 /*ref*/Correa, J., Pulgarín, A., Muñoz, L., y Álvarez, M. (2010). Marco normativo y antecedentes de la revelación contable en Colombia. Contaduría Universidad de Antioquia, (56), 269-292. /*ref*/Cultrera, L., y Brédart, X. (2016). Bankruptcy prediction: The case of Belgian SMEs. Review of Accounting and Finance, 15(1), 101-119. https://doi.org/10.1108/RAF-06-2014-0059 /*ref*/Dinca, G., Baba, M. C., Dinca, M. S., Dauti, B., y Deari, F. (2017). Insolvency risk prediction using the logit and logistic models: Some evidences from Romania. Economic Computation and Economic Cybernetics Studies and Research, 51(4), 139-157. /*ref*/Eling, M., y Jia, R. (2018). Business failure, efficiency, and volatility: Evidence from the European insurance industry. International Review of Financial Analysis, 59, 58-76. https://doi.org/10.1016/j.irfa.2018.07.007 /*ref*/Gupta, J., Gregoriou, A., y Ebrahimi, T. (2018). Empirical comparison of hazard models in predicting SMEs failure. Quantitative Finance, 18(3), 437-466. https://doi.org/10.1080/14697688.2017.1307514 /*ref*/Hastie, T., Tibshirani, R., Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Standford, California. /*ref*/Hebous, S., y De Mooij, R. (2018). Curbing Corporate Debt Bias: Do Limitations to Interest Deductibility Work? Journal of Banking y Finance, 1-11. https://doi.org/10.1016/j.jbankfin.2018.07.013 /*ref*/Jabeur, S. Ben, y Fahmi, Y. (2018). Forecasting financial distress for French firms: a comparative study. Empirical Economics, 54(3), 1173-1186. https://doi.org/10.1007/s00181-017-1246-1 /*ref*/Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009 /*ref*/Jones, S., Johnstone, D., y Wilson, R. (2017). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218 /*ref*/Jovanovik, D., Todorovic, M., y Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149. /*ref*/Kovacova, M., y Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium-Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. https://doi.org/10.24136/eq.v12i4.40 /*ref*/Le, T., Son, L. H., Vo, M. T., Lee, M. Y., y Baik, S. W. (2018). A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry, 10(7), 1-12. https://doi.org/10.3390/sym10070250 /*ref*/Ley 1116. (2006). Diario Oficial No. 46.494 de 27 de diciembre de 2006, Colombia, diciembre 27 de 2006. /*ref*/Lyandres, E., y Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16(3), 439-476. https://doi.org/10.1016/j.finmar.2012.10.003 /*ref*/Nyitrai, T., y Virág, M. (2018). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 1-9. https://doi.org/10.1016/0304-3762(82)90059-1 /*ref*/Pérez, J., Lopera, M., y Vásquez, F. (2017). Estimación de la probabilidad de riesgo de quiebra en las empresas colombianas a partir de un modelo para eventos raros. Cuadernos de Administración, 30(54), 7-38. https://doi.org/10.11144/Javeriana.cao30-54.eprqe /*ref*/Rodríguez, J. (2007). Nuevo régimen de insolvencia. Bogotá, Colombia: Universidad Externado de Colombia. /*ref*/Romero, F., Melgarejo, Z., y Vera, M. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6(13), 29-41. https://doi.org/10.1016/j.sumneg.2015.08.003 /*ref*/Tian, S. , y Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025 /*ref*/Upegui, A. y Londoño, Á. (2011). Comentarios al régimen de insolvencia empresarial. Bogotá, Colombia: Legis Editores. /*ref*/Vélez, L. (2011). ¿Qué tan bueno es el sistema de insolvencia empresarial colombiano? Revista Supersociedades, 2, 5-6. /*ref*/Wang, G., Ma, J., y Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033 /*ref*/Wilches, R. (2008). Vacíos e inconsistencias estructurales del nuevo régimen de insolvencia empresarial colombiano. Identificación y propuestas de solución. Vniversitas, (117), 197-218. /*ref*/Wilches, R. (2009). La insolvencia transfronteriza en el derecho colombiano. Revista de Derecho, (32), 162-198. /*ref*/Yazdanfar, D., y Öhman, P. (2015). Debt financing and firm performance: an empirical study based on Swedish data. The Journal of Risk Finance, 16(1), 102-118. https://doi.org/10.1108/JRF-06-2014-0085 Derechos de autor 2019 Panorama Económico https://creativecommons.org/licenses/by-nc-sa/4.0
spellingShingle Correa Mejía, Diego Andrés
Lopera Castaño, Mauricio
Forecast of business insolvency in Colombia through financial indicators.
title Forecast of business insolvency in Colombia through financial indicators.
title_full Forecast of business insolvency in Colombia through financial indicators.
title_fullStr Forecast of business insolvency in Colombia through financial indicators.
title_full_unstemmed Forecast of business insolvency in Colombia through financial indicators.
title_short Forecast of business insolvency in Colombia through financial indicators.
title_sort forecast of business insolvency in colombia through financial indicators.
url https://revistas.unicartagena.edu.co/index.php/panoramaeconomico/article/view/2639