Modelos de clasificación y predicción de quiebra de empresas: una aplicación a empresas chilenas

La clasificación y predicción de quiebra de empresas es un tema ampliamente tratado en el ámbito internacional, sin embargo existen pocos estudios de este tipo aplicados a las empresas chilenas. En este contexto, el objetivo de esta investigación es identificar cuál es el modelo que clasifica y pred...

Descripción completa

Detalles Bibliográficos
Autores principales: Gianni A. Romani Chocce, Patricio Aroca González, Nelson Aguirre Aguirre, Paola Leiton Vega, Javier Muñoz Carrazana
Formato: artículo científico
Lenguaje:Español
Publicado: Centro de Investigaciones Comerciales e Iniciativas Académicas 2002
Materias:
Acceso en línea:http://www.redalyc.org/articulo.oa?id=63170102
http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/50576
Descripción
Sumario:La clasificación y predicción de quiebra de empresas es un tema ampliamente tratado en el ámbito internacional, sin embargo existen pocos estudios de este tipo aplicados a las empresas chilenas. En este contexto, el objetivo de esta investigación es identificar cuál es el modelo que clasifica y predice, con mayor grado de confiabilidad, la quiebra de empresas en Chile. Con tal fin, se comparan tres modelos comúnmente utilizados: Análisis Discriminante Múltiple (ADM), Regresión Logística (LOGIT) y Redes Neuronales (RN), los que utilizan diferentes índices financieros, variables macroeconómicas y otras variables de control. Los modelos fueron aplicados a una muestra de 98 empresas, seleccionadas accidentalmente, sin restricción de giro comercial, 49 quebradas y 49 no quebradas. El resultado de la investigación muestra que si bien el modelo de Redes Neuronales resultó superior, tanto al modelo ADM como al LOGIT, en lo que respecta a clasificación y predicción, se requiere de otras herramientas para determinar el conjunto óptimo de variables a utilizar.